Unboundedly

日々大学院で学んだこと、考えたことを更新

統計的因果推論入門の講義資料を公開しました

去年末に日本に帰国した際、ありがたいことに多くの方から因果推論に関するレクチャーの依頼をいただきました。 本当はこの春にも帰国してトーク予定だったのですが、コロナ渦でタイミングを逸したので思い切って講義資料を公開することにしました。 ツイッ…

Consistency:「●●の効果」が1つに決まらない?~見過ごされがちな因果推論の仮定~

今回は統計的因果推論の重要な仮定の1つであるConsistencyについてまとめます。 「因果推論」というと、交絡・選択バイアスといった問題の議論に終始することが多いです。それに対して、Consistencyの重要性は見過ごされがちです。 端的に言えば、「そもそ…

選択(セレクション)バイアスとは?人によって定義が違うので整理してみた。

疫学と経済学、どちらもある要因Xがある要因Yに与える因果的な効果の大きさを推定する「因果推論」に関心があることが多いです。 「選択(セレクション)バイアス」「交絡」「内生性」、多くの用語が因果推論で登場します。 ところが、話をしているとどうも噛…

回帰分析を使った因果推論の仮定:パラメトリックモデルを使うということ

お久しぶりです。冬休みなので、以前Twitterでとったアンケートで一番人気だった内容について書きます。 今回は統計“モデル”を使うことの意味について因果推論の視点からまとめてみようと思います。普段なんとなく回帰分析を使っている人は一読をおススメし…

「世界一高いIQ」が生んだ謎、モンティホール問題はなぜパラドックスなのか

今回は、前回紹介したシンプソンのパラドックスと同じくらい有名な統計トリック、モンティホール問題について書きます。確率的に正しいことと、我々人間の直感が大きく食い違うシチュエーションの非常に良い例だと思います。 モンティホール問題についての解…

データ分析の不思議、シンプソンのパラドックスを統計的因果推論から考える

今回は統計学で有名な「シンプソンのパラドックス」という問題について紹介したいと思います。簡単にいえば、同じデータでも分析の仕方によって全く矛盾したように見える結果が得られるというお話です。データだけ見ると、信じがたいような直感に反する現象…

統計的因果推論のためのPythonライブラリDoWhyについて解説:なにができて、なにに注意すべきか

機械学習など主に予測を目的とした統計手法に強いイメージのPythonでしたが、統計的因果推論を行うためのライブラリ、“DoWhy”がついにリリースされました。 DoWhy | Making causal inference easy — DoWhy | Making Causal Inference Easy documentation こ…