Unboundedly

日々大学院で学んだこと、考えたことを更新

「世界一高いIQ」が生んだ謎、モンティホール問題はなぜパラドックスなのか

今回は、前回紹介したシンプソンのパラドックスと同じくらい有名な統計トリック、モンティホール問題について書きます。確率的に正しいことと、我々人間の直感が大きく食い違うシチュエーションの非常に良い例だと思います。 モンティホール問題についての解…

データ分析の不思議、シンプソンのパラドックスを統計的因果推論から考える

今回は統計学で有名な「シンプソンのパラドックス」という問題について紹介したいと思います。簡単にいえば、同じデータでも分析の仕方によって全く矛盾したように見える結果が得られるというお話です。データだけ見ると、信じがたいような直感に反する現象…

統計的因果推論のためのPythonライブラリDoWhyについて解説:なにができて、なにに注意すべきか

機械学習など主に予測を目的とした統計手法に強いイメージのPythonでしたが、統計的因果推論を行うためのライブラリ、“DoWhy”がついにリリースされました。 DoWhy | Making causal inference easy — DoWhy | Making Causal Inference Easy documentation こ…

因果効果のメカニズムを検討する:媒介分析(Causal Mediation Analysis)入門②~反事実モデルに基づく媒介効果の定義~

媒介分析シリーズ、第二段です。前回は、よく使われる媒介分析の手法の問題点についてまとめました。 今回は、これらの問題を克服するべく考案された因果媒介分析(Causal Mediation Analysis)を紹介するイントロとして、そもそも「媒介効果」なるものをどう…

データから因果関係をどう導く?:統計的因果推論の基本、「反事実モデル」をゼロから

データに基づく因果推論がどのように行われるのか、詳しく説明していきます。因果の定義、因果推論に必要な条件、RCTの意義などいろいろまとめていたら、例のごとくすごいボリュームになってしまいました。なお、本記事で使われる用語は、「疫学」の因果推論…

因果効果のメカニズムを検討する:媒介分析(Causal Mediation Analysis)入門①~既存の手法の問題点~

お久しぶりです。無事に博士課程の進級試験(qualifying exam)を通過しましたので、ようやく長かった二年間のコースワーク期間が終わりました。まだ口頭試験がありますが、これからやっと研究に集中できるフェーズに入ります。同時に時間にも余裕ができてき…

炭水化物は体に悪い?脂質をたくさん摂るほど健康に良い?:2017年世界一に選ばれた科学論文を解説

久しぶりのブログ更新です。今回は、「炭水化物を摂取すると死亡率があがる」「脂肪はたくさん摂っても死亡率に影響がない」ことを示したとして2017年世界中で話題になった以下の論文について、論文自体の問題点やメディアで取り上げられている内容の誤りに…